

Sea-level rise impacts on the Mediterranean UNESCO World Heritage Sites

Athanasios T. Vafeidis & Lena Reimann

Overview

- Sea-level Rise (SLR) How much, how soon, potential impacts
- Coastal World Heritage Sites (WHS) in the Mediterranean
- Assessing risk of coastal WHS to flooding and erosion
- Adaptation and barriers
- Conclusions

Sea-level rise projections

Mediterranean

Scenario	in 2100 (m)			
RCP2.6	0.36			
RCP4.5	0.47			
RCP8.5	0.62			
High-end (RCP8.5, 95 th p)	1.46			

Based on Kopp et al. 2017

IPCC (2014), Synthesis Report, SPM

SLR and Socioeconomic Development

Main physical impacts of SLR

- Higher extreme water levels
- Coastal erosion
- Saltwater intrusion
- Loss of land & coastal ecosystems

Socioeconomic development

- Population concentration
- High urbanization
- Land subsidence
- Varying adaptive capacity

The Mediterranean

UNEP MAP (2012)

2011; UNDESA, Population Division, online database, accessed in August 2011.

2) CULTURAL HERITAGE AT RISK

Starting point

- UNESCO World Heritage Sites (WHS) can be highly vulnerable
 - High intangible value
 - May lose Outstanding Universal Value (OUV)
 - Special adaptation needs

Regional Assessment

- 1) Assess WHS at risk from coastal flooding and erosion under four SLR scenarios until 2100
 - 1,092 natural and cultural WHS (2018)
 - We focused on cultural WHS (Reimann et al., Nat. Comms.)

- 2) Support adaptation planning
 - Identify WHS most at risk
 - Basis for local-scale assessments
 - Raise awareness

Analysis

- WHS data processing lack of a coherent and consistent database
- Estimate 100-yr extreme water level and local SLR (for 4 scenarios)
- Model flood extent and depth
- Assess flood & erosion risk

Old City of Dubrovnik, Croatia

Risk analysis

INDEX	0	1	2	3	4	5	
Indicator	not at risk	very low	low	moderate	high	very high	
FLOOD RISK							
Flood area [%]	0	> 0				≥ 50	Flood risk index
Flood depth [m]	0	> 0				≥ 1	IIIUEX
EROSION RISK							
Distance [m]	> 500	500				< 10	
Coastal material		rocky	-	muddy; rocky with pocket beaches	-	sandy	Erosion risk index
Mean wave height [m]		0.1				> 0.8	
Sediment supply [mg/l]		11.5			——	< 0.5	

Flood risk in 2100 (high-end)

- 40 WHS at risk (82 %)
- Italy (13), Croatia (6), Greece (3)

Venice: Flood area 98 %

Flood depth 2.5 m

Erosion risk in 2100 (high-end)

- 46 WHS at risk (94 %)
- Highest risk: Tyre, Lebanon
- Italy (14), Croatia (7), Greece (4)

Implications for adaptation

Relocation

Accommodation

Protection

- Must not compromise the site's OUV
- Should account for multiple risks and long-term change
- Need for innovative adaptation strategies

La Stampa (Oct 12, 2017)

Barriers to Adaptation

General Adaptation Barriers to SLR (Hinkel et al., 2018, Nat. Clim.)

Technological limits

Social Conflict

Economic

Institutional

Finance

Barriers to WHS Adaptation to SLR

Social Conflict

Institutional

Economic

Finance

Technological limits

Research Gaps and Needs

- Consistent database on WHS characteristics
- Case-specific detailed studies of vulnerability to multiple hazards
- Interdisciplinary teams of experts
 (e.g. engineers, architects, climatologists, chemists, archaelogists, geologists and others)
- Strong institutional framework

Conclusions – Key Messages

16

- Coastal WHS are, or will be, threatened by SLR (virtually certain)
- In the Mediterranean alone, 40+ sites will be at high risk by the end of the century (*likely*)
- Adaptation will be essential for preserving WHS (virtually certain)
- Conventional adaptation will NOT be adequate for preserving WHS
- Innovative adaptation, driven by case-specific interdisciplinary analysis will be essential in maintaining the OUV of WHS
- Early adaptation is necessary

Key Messages

- A large number of coastal WHS are, or will be, threatened by SLR (virtually certain)
- In the Mediterranean alone, 40+ sites are expected be at high risk by the end of the century (likely)
- Adaptation will be essential for preserving WHS (virtually certain)
- Conventional adaptation will <u>NOT</u> be adequate for preserving WHS
- Innovative adaptation, driven by case-specific interdisciplinary analysis will be essential in maintaining the UOV of WHS
- Early adaptation is necessary

Thank you for your attention!

vafeidis@geographie.uni-kiel.de

Selected references

- IPCC (2014). Climate Change 2014: Synthesis Report. Summary for Policymakers
- IPCC (2014): Summary for policymakers. In: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects.

 Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge

 University Press
- Kopp, R. E., DeConto, R. M., Bader, D. A., Hay, C. C., Horton, R. M., Kulp, S., ... & Strauss, B. H. (2017). Evolving understanding of Antarctic ice-sheet physics and ambiguity in probabilistic sea-level projections. Earth's Future, 5(12):1217-1233
- Merkens J-L, Reimann L, Hinkel J, Vafeidis A (2016). Gridded population projections for the coastal zone under the Shared Socioeconomic Pathways. Global and Planetary Change 145:57-66
- O'Neill, B. C., Kriegler, E., Riahi, K., Ebi, K. L., Hallegatte, S., Carter, T. R., ... & van Vuuren, D. P. (2014). A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change, 122(3):387-400
- O'Neill, B. C., Kriegler, E., Ebi, K. L., Kemp-Benedict, E., Riahi, K., Rothman, D. S., ... & Levy, M. (2017). The roads ahead: narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environmental Change, 42:169-180
- UNEP/MAP (2012). State of the Mediterranean Marine and Coastal Environments. UNEP/MAP Athens.
- Van Vuuren, D. P., Kriegler, E., O'Neill, B. C., Ebi, K. L., Riahi, K., Carter, T. R., ... & Winkler, H. (2014). A new scenario framework for climate change research: scenario matrix architecture. Climatic Change, 122(3):373-386

Risk framework

19

World Heritage data processing

- Correct downloaded point coordinate data
 - Add data entry of each serial site
 - Relocate misplaced points
- Manually digitize polygon of each site

Old City of Dubrovnik, Croatia

12/07/2018

Risk analysis – Flood Risk

FLOOD RISK

100-yr floodplain

- Storm surge
- Regional sea-level rise

- Flood area
- Flood depth

Risk analysis – Erosion Risk

EROSION RISK

- Distance from the coast
- Coastal material
- Mean wave height
- Sediment supply